Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts.

نویسندگان

  • Lin Gan
  • Marc Heggen
  • Rachel O'Malley
  • Brian Theobald
  • Peter Strasser
چکیده

Nanoporosity is a frequently reported phenomenon in bimetallic particle ensembles used as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. It is generally considered a favorable characteristic, because it increases the catalytically active surface area. However, the effect of nanoporosity on the intrinsic activity and stability of a nanoparticle electrocatalyst has remained unclear. Here, we present a facile atmosphere-controlled acid leaching technique to control the formation of nanoporosity in Pt-Ni bimetallic nanoparticles. By statistical analysis of particle size, composition, nanoporosity, and atomic-scale core-shell fine structures before and after electrochemical stability test, we uncover that nanoporosity formation in particles larger than ca. 10 nm is intrinsically tied to a drastic dissolution of Ni and, as a result of this, a rapid drop in intrinsic catalytic activity during ORR testing, translating into severe catalyst performance degradation. In contrast, O2-free acid leaching enabled the suppression of nanoporosity resulting in more solid core-shell particle architectures with thin Pt-enriched shells; surprisingly, such particles maintained high intrinsic activity and improved catalytic durability under otherwise identical ORR tests. On the basis of these findings, we suggest that catalytic stability could further improve by controlling the particle size below ca. 10 nm to avoid nanoporosity. Our findings provide an explanation for the degradation of bimetallic particle ensembles and show an easy to implement pathway toward more durable fuel cell cathode catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control thei...

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

Synthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation

The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...

متن کامل

A comparative study on the kinetics of carbon dioxide methanation over bimetallic and monometallic catalysts

In this paper, Ni/Al and La-Ni/Al catalysts were prepared with a co-impregnation method and employed in carbon dioxide methanation reaction. The catalytic results showed that the catalyst with (10wt.%) of lanthanum and (20wt.%) nickel had the highest activity at low temperatures in CO2 methanation and the La-Ni/Al catalysts changed the reaction path by lowering its activation energy and consequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2013